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1 Important Stochastic PDEs

1.1 The stochastic heat equation

Last time, we considered the stochastic heat equation

ut = ∆u+ ξ, x ∈ Rd, t ∈ R

where ξ is space time white noise. We stated that we expect u ∈ C−d/2+1. In particular,
u ∈ C1/2 in x and ∈ C1/4 in t when d = 1, but when d > 1 we don’t have a function; it will
be a distribution.

Later, we will see how a “subcritical” perturbation can be treated after a “renormal-
ization.” To explain this, let us first study the scaling properties of the above stochastic
heat equation. Recall that ξ is a 0-mean Gaussian with E[ξ(x, t)ξ(y, s)] = δ0(x− y, t− s).
So λ→∞, λd+1ρ(λx, λ2t)→ δ0(x, t). Observe that λd+2δ0(λx, λ

2x) = δ0(x, t). Hence,

ξ̂(x, t) = λ(d+2)/2ξ(λx, λ2t)
d
= ξ(x, t).

Now we go back to the stochastic heat equation, and if u is a solution, and if û(x, t) =
λd/2−1u(λx, λ2t), then

(û−∆û)(x, t) = λd/2+1(ut −∆u)(λx, λ2t) = ξ̂
d
= ξ.

Thus, û is again a solution of the stochastic heat equation. This is compatible with our
guess for the Hölder regularity of the solution, namely u ∈ C(1−d/2)− in x and ∈ C(1/2−d/4)−
in t.

1.2 The SHE with multiplicative noise

This PDE looks like
Zt = ∆Z + σ(Z)ξ

for a suitable function σ : R→ R.
Two examples that are particularly important are:
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1. σ(Z) =
√
Z. This example appears in several models in math biology and population

dynamics. Imagine you are modeling fish in a lake. Say each fish has an independent
exponentially distributed clock that tells you when it dies. When it dies, you replace
the fish with a number of descendants.

Imagine that each particle travels as a Brownian motion, all independent, and after an
exponential random time, a particle is replaced with N many particles with E[N ] =
m. When m = 1, we have a critical regime, and as the initial number of particles goes
to infinity, we get a measure-valued process known as super Brownian motion.
When d = 1, this measure has a density Z, and Z solves this SHE with multiplicative
noise for σ(Z) =

√
Z. This is also associated with Brownian snake.

2. σ(Z) = Z. As we will see shortly, this case is related to stochastic growth models.

It turns out that we can make sense of the SHE with multiplicative noise à la Itô. In other
words, we write

Z(x, t) =

∫
p(x− y, t)Z(y, 0) dt+

∫ t

0

∫
p(x− y, t− s)Z(y, s) ξ(y, s) dy dx︸ ︷︷ ︸

W (dy,ds)

when d = 1. Note that we still have the Hölder continuous Z multiplied by the distribution
ξ. Hairer treated this PDE in 2013.

1.3 The Kardar-Parisi-Zhang equation

We wish to model stochastic growths. Often we have a random interface separating different
phases. If the interface can be represented by a graph of a (height) function h : Rd×[0, T ]→
R, then the Hamilton-Jacobi PDE of the form

ht = H(hx) (+∆u)

would be a good model as a first approximation. To capture the roughness of the interface,
we may write

ht = H(hx) +D∆h+ λξ.

After some manipulation (expanding h about a linear function), we end up with the KPZ
equation:

ht = |hx|2 + ∆h+ ξ.

This is a far more singular PDE than what we have seen before. Note that when d = 1,
we expect h ∈ C1/2−, and hx ∈ C−1/2.

The main challenge is to make sense of |hx|2. Indeed, the KPZ equation is “subcritical”
only when d = 1. To explain this, let h be a solution to this equation, and set ĥ(x, t) =
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λd/2−1h(λx, λ2t). Then

(ĥt −∆ĥ)(x, t) = λd/2+1ξ(λx, λ2t)︸ ︷︷ ︸
ξ̂(x,t)

+λd/2+1|hx(λx, λ2t)|2

= ξ̂(x, t) + λ1−d/2|ĥx(x, t)|2.

There are a few cases:

1. If d = 1, then as λ→ 0, the nonlinearity disappears. So, locally, the nonlinearity can
be ignored!

2. If d = 2, this is the critical regime. In fact, if we multiply |hx|2 with a constant of
size C√

| log ε|
(after some smoothing), then we know how to handle the PDE.

3. If d > 2, then this is an open problem. We need to replace C√
| log ε|

with Cεd/2−1.

First observe that if Z = eh and h solves the KPZ equation, then Z solves the SHE with
multiplicative noise. This is called the Hopf-Cole transform. This is surprising because
the type of singularity we encounter in the KPZ equation is much worse than in the SHE
with multiplicative noise. The problem is that the type of solution we had for the SHE
with multiplicative noise à la Itô, which means that the usual chain rule must be corrected.
Recall that if ẏ = b(x, t) + σdB(t), then

dϕ(y) = ϕ′(y)(b dt+ σ dB(t)) +
1

2
ϕ′′(y)σ2 dt,

where d means the derivative. Recall that
∑

j(B(tj+1)−B(tj))
2 → t, so (dB)2 = dt. Thus,

we get the Itô correction.
Let’s go back to Hopf-Cole and do it carefully. To do this carefully, take a smooth

kernel χ with
∫
χ = 1, set ξε(x) = ε−dξ(x/ε), and put

ξε(x, t) =

∫
χε(x− y)ξε(y, t).

Then first solve
Zεt = Zεxx + ξεZε.

Fix x, and treat this equation as a stochastic differential equation in t. Observe that

E[ξ(x, t)2] = E

[(∫
ξ(y, t)χε(x− y) dy

)2
]

= E
[∫∫

ξ(y, t)ξ(y′, t)χε(x− y)χε(x− y′) dy dy′
]
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= δ0(t)

∫
(χε(x− y))2 dy

= δ0(t)ε
−1
(∫

χ2

)
︸ ︷︷ ︸

c

.

If hε = logZε, this satisfies

hεt = hεxx +

[
(hεx)2 − 1

2
cε−1

]
+ ξε.

We aimed for the KPZ equation, but letting hε → h, we get that

ht = hxx + (h2x −∞) + ξ.

So we get that this blows up, but we know exactly how.
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